Nonlinear regression modeling via regularized wavelets and smoothing parameter selection
Toru Fujii and
Sadanori Konishi
Journal of Multivariate Analysis, 2006, vol. 97, issue 9, 2023-2033
Abstract:
We introduce regularized wavelet-based methods for nonlinear regression modeling when design points are not equally spaced. A crucial issue in the model building process is a choice of tuning parameters that control the smoothness of a fitted curve. We derive model selection criteria from an information-theoretic and also Bayesian approaches. Monte Carlo simulations are conducted to examine the performance of the proposed wavelet-based modeling technique.
Keywords: Automatic; smoothing; parameter; selection; Irregular; design; points; Linear; shrinkage; Regression; modeling; Wavelets (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00085-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:9:p:2023-2033
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().