Non-uniform bounds for short asymptotic expansions in the CLT for balls in a Hilbert space
S.A. Bogatyrev,
F. Götze and
V.V. Ulyanov
Journal of Multivariate Analysis, 2006, vol. 97, issue 9, 2041-2056
Abstract:
We consider short asymptotic expansions for the probability of a sum of i.i.d. random elements to hit a ball in a Hilbert space H. The error bound for the expansion is of order O(n-1). It depends on the first 12 eigenvalues of the covariance operator only. Moreover, the bound is non-uniform, i.e. the accuracy of the approximation becomes better as the distance between a boundary of the ball and the origin in H grows.
Keywords: Central; limit; theorem; Hilbert; space; Gaussian; approximation; Edgeworth; expansions; Covariance; operator (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00087-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:9:p:2041-2056
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().