EconPapers    
Economics at your fingertips  
 

Non-uniform bounds for short asymptotic expansions in the CLT for balls in a Hilbert space

S.A. Bogatyrev, F. Götze and V.V. Ulyanov

Journal of Multivariate Analysis, 2006, vol. 97, issue 9, 2041-2056

Abstract: We consider short asymptotic expansions for the probability of a sum of i.i.d. random elements to hit a ball in a Hilbert space H. The error bound for the expansion is of order O(n-1). It depends on the first 12 eigenvalues of the covariance operator only. Moreover, the bound is non-uniform, i.e. the accuracy of the approximation becomes better as the distance between a boundary of the ball and the origin in H grows.

Keywords: Central; limit; theorem; Hilbert; space; Gaussian; approximation; Edgeworth; expansions; Covariance; operator (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00087-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:9:p:2041-2056

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:97:y:2006:i:9:p:2041-2056