EconPapers    
Economics at your fingertips  
 

Minimum distance classification rules for high dimensional data

Muni S. Srivastava

Journal of Multivariate Analysis, 2006, vol. 97, issue 9, 2057-2070

Abstract: In this article, the problem of classifying a new observation vector into one of the two known groups [Pi]i,i=1,2, distributed as multivariate normal with common covariance matrix is considered. The total number of observation vectors from the two groups is, however, less than the dimension of the observation vectors. A sample-squared distance between the two groups, using Moore-Penrose inverse, is introduced. A classification rule based on the minimum distance is proposed to classify an observation vector into two or several groups. An expression for the error of misclassification when there are only two groups is derived for large p and n=O(p[delta]),0

Keywords: Fisher; discriminant; rule; Misclassification; error; Moore-Penrose; inverse; Multivariate; normal; Singular; Wishart (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00088-1
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:97:y:2006:i:9:p:2057-2070

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:97:y:2006:i:9:p:2057-2070