EconPapers    
Economics at your fingertips  
 

HAC estimation and strong linearity testing in weak ARMA models

Christian Francq and Jean-Michel Zakoian

Journal of Multivariate Analysis, 2007, vol. 98, issue 1, 114-144

Abstract: In the framework of ARMA models, we consider testing the reliability of the standard asymptotic covariance matrix (ACM) of the least-squares estimator. The standard formula for this ACM is derived under the assumption that the errors are independent and identically distributed, and is in general invalid when the errors are only uncorrelated. The test statistic is based on the difference between a conventional estimator of the ACM of the least-squares estimator of the ARMA coefficients and its robust HAC-type version. The asymptotic distribution of the HAC estimator is established under the null hypothesis of independence, and under a large class of alternatives. The asymptotic distribution of the proposed statistic is shown to be a standard [chi]2 under the null, and a noncentral [chi]2 under the alternatives. The choice of the HAC estimator is discussed through asymptotic power comparisons. The finite sample properties of the test are analyzed via Monte Carlo simulation.

Keywords: ARMA; models; Nonlinear; models; Least-squares; estimator; Long-run; variance; matrix; Diagnostic; checking; Kernel; estimator (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00017-0
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:98:y:2007:i:1:p:114-144

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:jmvana:v:98:y:2007:i:1:p:114-144