Density testing in a contaminated sample
Hajo Holzmann,
Nicolai Bissantz and
Axel Munk
Journal of Multivariate Analysis, 2007, vol. 98, issue 1, 57-75
Abstract:
We study non-parametric tests for checking parametric hypotheses about a multivariate density f of independent identically distributed random vectors Z1,Z2,... which are observed under additional noise with density [psi]. The tests we propose are an extension of the test due to Bickel and Rosenblatt [On some global measures of the deviations of density function estimates, Ann. Statist. 1 (1973) 1071-1095] and are based on a comparison of a nonparametric deconvolution estimator and the smoothed version of a parametric fit of the density f of the variables of interest Zi. In an example the loss of efficiency is highlighted when the test is based on the convolved (but observable) density g=f*[psi] instead on the initial density of interest f.
Keywords: Asymptotic; normality; Deconvolution; Goodness; of; fit; Integrated; square; error; Multivariate; nonparametric; density; estimation (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00164-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:98:y:2007:i:1:p:57-75
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().