Conditional limiting distribution of Type III elliptical random vectors
Enkelejd Hashorva
Journal of Multivariate Analysis, 2007, vol. 98, issue 2, 282-294
Abstract:
In this paper we consider elliptical random vectors in with stochastic representation RAU where R is a positive random radius independent of the random vector U which is uniformly distributed on the unit sphere of and is a non-singular matrix. When R has distribution function in the Weibull max-domain of attraction we say that the corresponding elliptical random vector is of Type III. For the bivariate set-up, Berman [Sojurns and Extremes of Stochastic Processes, Wadsworth & Brooks/ Cole, 1992] obtained for Type III elliptical random vectors an interesting asymptotic approximation by conditioning on one component. In this paper we extend Berman's result to Type III elliptical random vectors in . Further, we derive an asymptotic approximation for the conditional distribution of such random vectors.
Keywords: Asymptotic; approximation; Elliptical; random; vectors; Conditional; distribution; Weibull; max-domain; of; attraction; Weak; convergence (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00168-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:98:y:2007:i:2:p:282-294
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().