Estimation of normal covariance matrices parametrized by irreducible symmetric cones under Stein's loss
Yoshihiko Konno
Journal of Multivariate Analysis, 2007, vol. 98, issue 2, 295-316
Abstract:
In this paper the problem of estimating a covariance matrix parametrized by an irreducible symmetric cone in a decision-theoretic set-up is considered. By making use of some results developed in a theory of finite-dimensional Euclidean simple Jordan algebras, Bartlett's decomposition and an unbiased risk estimate formula for a general family of Wishart distributions on the irreducible symmetric cone are derived; these results lead to an extension of Stein's general technique for derivation of minimax estimators for a real normal covariance matrix. Specification of the results to the multivariate normal models with covariances which are parametrized by complex, quaternion, and Lorentz types gives minimax estimators for each model.
Keywords: Minimax; Stein; estimator; Generalized; Wishart; distribution; Bartlett; decomposition; Unbiased; risk; estimate; Jordan; algebras (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00094-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:98:y:2007:i:2:p:295-316
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().