Linear discrimination with equicorrelated training vectors
Ricardo Leiva
Journal of Multivariate Analysis, 2007, vol. 98, issue 2, 384-409
Abstract:
Fisher's linear discrimination rule requires uncorrelated training vectors. In this paper a linear discrimination method is developed to be used when the training vectors are equicorrelated. Also, maximum likelihood ratio tests are proposed to decide whether the training samples are uncorrelated or equicorrelated.
Keywords: Linear; discrimination; Equicorrelated; training; vectors; Likelihood; ratio; test (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00093-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:98:y:2007:i:2:p:384-409
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().