More on the inadmissibility of step-up
Arthur Cohen and
Harold B. Sackrowitz
Journal of Multivariate Analysis, 2007, vol. 98, issue 3, 481-492
Abstract:
Cohen and Sackrowitz [Characterization of Bayes procedures for multiple endpoint problems and inadmissibility of the step-up procedure, Ann. Statist. 33 (2005) 145-158] proved that the step-up multiple testing procedure is inadmissible for a multivariate normal model with unknown mean vector and known intraclass covariance matrix. The hypotheses tested are each mean is zero vs. each mean is positive. The risk function is a 2x1 vector where one component is average size and the other component is one minus average power. In this paper, we extend the inadmissibility result to several different models, to two-sided alternatives, and to other risk functions. The models include one-parameter exponential families, independent t-variables, independent [chi]2-variables, t-tests arising from the analysis of variance, and t-tests arising from testing treatments against a control. The additional risk functions are linear combinations where one component is the false discovery rate (FDR).
Keywords: Multiple; testing; procedures; False; discovery; rate; (FDR); False; acceptance; rate; Classification; risk; Vector; risk; Finite; action; problem; Schur; convexity (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00020-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:98:y:2007:i:3:p:481-492
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().