EconPapers    
Economics at your fingertips  
 

Limit distribution of the sum and maximum from multivariate Gaussian sequences

Barry James, Kang James and Yongcheng Qi

Journal of Multivariate Analysis, 2007, vol. 98, issue 3, 517-532

Abstract: In this paper we study the asymptotic joint behavior of the maximum and the partial sum of a multivariate Gaussian sequence. The multivariate maximum is defined to be the coordinatewise maximum. Results extend univariate results of McCormick and Qi. We show that, under regularity conditions, if the maximum has a limiting distribution it is asymptotically independent of the partial sum. We also prove that the maximum of a stationary sequence, when normalized in a special sense which includes subtracting the sample mean, is asymptotically independent of the partial sum (again, under regularity conditions). The limiting distributions are also obtained.

Keywords: Gaussian; process; Maximum; Sum; Stationary; sequence (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00099-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:98:y:2007:i:3:p:517-532

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:98:y:2007:i:3:p:517-532