Kernel-based goodness-of-fit tests for copulas with fixed smoothing parameters
Olivier Scaillet
Journal of Multivariate Analysis, 2007, vol. 98, issue 3, 533-543
Abstract:
We study a test statistic based on the integrated squared difference between a kernel estimator of the copula density and a kernel smoothed estimator of the parametric copula density. We show for fixed smoothing parameters that the test is consistent and that the asymptotic properties are driven by a U-statistic of order 4 with degeneracy of order 1. For practical implementation we suggest to compute the critical values through a semiparametric bootstrap. Monte Carlo results show that the bootstrap procedure performs well in small samples. In particular, size and power are less sensitive to smoothing parameter choice than they are under the asymptotic approximation obtained for a vanishing bandwidth.
Keywords: Nonparametric; Copula; density; Goodness-of-fit; test; U-statistic (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00065-0
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Kernel Based Goodness-of-Fit Tests for Copulas with Fixed Smoothing Parameters (2005) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:98:y:2007:i:3:p:533-543
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().