Distribution and characteristic functions for correlated complex Wishart matrices
Peter J. Smith and
Lee M. Garth
Journal of Multivariate Analysis, 2007, vol. 98, issue 4, 661-677
Abstract:
Let A(t) be a complex Wishart process defined in terms of the MxN complex Gaussian matrix X(t) by A(t)=X(t)X(t)H. The covariance matrix of the columns of X(t) is [Sigma]. If X(t), the underlying Gaussian process, is a correlated process over time, then we have dependence between samples of the Wishart process. In this paper, we study the joint statistics of the Wishart process at two points in time, t1, t2, where t1
Keywords: Correlated; Wishart; Non-central; distribution; Eigenvalues; Hypergeometric; function (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00157-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:98:y:2007:i:4:p:661-677
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().