On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices
R. Brent Dozier and
Jack W. Silverstein
Journal of Multivariate Analysis, 2007, vol. 98, issue 4, 678-694
Abstract:
Let Xn be nxN containing i.i.d. complex entries and unit variance (sum of variances of real and imaginary parts equals 1), [sigma]>0 constant, and Rn an nxN random matrix independent of Xn. Assume, almost surely, as n-->[infinity], the empirical distribution function (e.d.f.) of the eigenvalues of converges in distribution to a nonrandom probability distribution function (p.d.f.), and the ratio tends to a positive number. Then it is shown that, almost surely, the e.d.f. of the eigenvalues of converges in distribution. The limit is nonrandom and is characterized in terms of its Stieltjes transform, which satisfies a certain equation.
Keywords: Random; matrix; Empirical; distribution; function; of; eigenvalues; Stieltjes; transform (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00160-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:98:y:2007:i:4:p:678-694
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().