On minimaxity and admissibility of hierarchical Bayes estimators
Tatsuya Kubokawa and
William E. Strawderman
Journal of Multivariate Analysis, 2007, vol. 98, issue 4, 829-851
Abstract:
This paper obtains conditions for minimaxity of hierarchical Bayes estimators in the estimation of a mean vector of a multivariate normal distribution. Hierarchical prior distributions with three types of second stage priors are treated. Conditions for admissibility and inadmissibility of the hierarchical Bayes estimators are also derived using the arguments in Berger and Strawderman [Choice of hierarchical priors: admissibility in estimation of normal means, Ann. Statist. 24 (1996) 931-951]. Combining these results yields admissible and minimax hierarchical Bayes estimators.
Keywords: Admissibility; Bayes; inference; Estimation; Hierarchical; Bayes; model; Inadmissibility; Minimaxity; Mixed; linear; model; Multivariate; normal; distribution; Shrinkage; estimation (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00122-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:98:y:2007:i:4:p:829-851
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().