EconPapers    
Economics at your fingertips  
 

Asymptotic confidence intervals for Poisson regression

Michael Kohler and Adam Krzyzak

Journal of Multivariate Analysis, 2007, vol. 98, issue 5, 1072-1094

Abstract: Let (X,Y) be a -valued random vector where the conditional distribution of Y given X=x is a Poisson distribution with mean m(x). We estimate m by a local polynomial kernel estimate defined by maximizing a localized log-likelihood function. We use this estimate of m(x) to estimate the conditional distribution of Y given X=x by a corresponding Poisson distribution and to construct confidence intervals of level [alpha] of Y given X=x. Under mild regularity conditions on m(x) and on the distribution of X we show strong convergence of the integrated L1 distance between Poisson distribution and its estimate. We also demonstrate that the corresponding confidence interval has asymptotically (i.e., for sample size tending to infinity) level [alpha], and that the probability that the length of this confidence interval deviates from the optimal length by more than one converges to zero with the number of samples tending to infinity.

Keywords: Poisson; regression; Local; polynomial; kernel; estimate; Confidence; interval (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00114-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:98:y:2007:i:5:p:1072-1094

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:98:y:2007:i:5:p:1072-1094