REML estimation for binary data in GLMMs
Maengseok Noh and
Youngjo Lee
Journal of Multivariate Analysis, 2007, vol. 98, issue 5, 896-915
Abstract:
The restricted maximum likelihood (REML) procedure is useful for inferences about variance components in mixed linear models. However, its extension to hierarchical generalized linear models (HGLMs) is often hampered by analytically intractable integrals. Numerical integration such as Gauss-Hermite quadrature (GHQ) is generally not recommended when the dimensionality of the integral is high. With binary data various extensions of the REML method have been suggested, but they have had unsatisfactory biases in estimation. In this paper we propose a statistically and computationally efficient REML procedure for the analysis of binary data, which is applicable over a wide class of models and design structures. We propose a bias-correction method for models such as binary matched pairs and discuss how the REML estimating equations for mixed linear models can be modified to implement more general models.
Keywords: Generalized; linear; mixed; models; Hierarchical; generalized; linear; models; Restricted; maximum; likelihood; Restricted; likelihood; Hierarchical; likelihood; Laplace; method (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00208-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:98:y:2007:i:5:p:896-915
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().