Moderate deviations for quadratic forms in Gaussian stationary processes
Yoshihide Kakizawa
Journal of Multivariate Analysis, 2007, vol. 98, issue 5, 992-1017
Abstract:
Moderate deviations limit theorem is proved for quadratic forms in zero-mean Gaussian stationary processes. Two particular cases are the cumulative periodogram and the kernel spectral density estimator. We also derive the exponential decay of moderate deviation probabilities of goodness-of-fit tests for the spectral density and then discuss intermediate asymptotic efficiencies of tests.
Keywords: Moderate; deviations; Gaussian; stationary; process; Spectral; density; Quadratic; forms; Toeplitz; matrix; Cumulative; periodogram; Kernel; spectral; density; estimator (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00115-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:98:y:2007:i:5:p:992-1017
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().