Weak convergence of non-stationary multivariate marked processes with applications to martingale testing
Juan Carlos Escanciano
Journal of Multivariate Analysis, 2007, vol. 98, issue 7, 1321-1336
Abstract:
This paper establishes the weak convergence of a class of marked empirical processes of possibly non-stationary and/or non-ergodic multivariate time series sequences under martingale conditions. The assumptions involved are similar to those in Brown's martingale central limit theorem. In particular, no mixing conditions are imposed. As an application, we propose a test statistic for the martingale hypothesis and we derive its asymptotic null distribution. Finally, a Monte Carlo study shows that the asymptotic results provide good approximations for small and moderate sample sizes. An application to the S&P 500 is also considered.
Keywords: Marked; empirical; processes; Weak; convergence; Martingale; hypothesis; Non-stationary; time; series (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00041-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:98:y:2007:i:7:p:1321-1336
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().