Scan clustering: A false discovery approach
M. Perone Pacifico,
C. Genovese,
I. Verdinelli and
L. Wasserman
Journal of Multivariate Analysis, 2007, vol. 98, issue 7, 1441-1469
Abstract:
We present a method that scans a random field for localized clusters while controlling the fraction of false discoveries. We use a kernel density estimator as the test statistic and adjust for the bias in this estimator by a method we introduce in this paper. We also show how to combine information across multiple bandwidths while maintaining false discovery control.
Keywords: False; discovery; proportion; Multiple; testing; Kernel; density; estimators; Bandwidth; selection (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00203-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:98:y:2007:i:7:p:1441-1469
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().