EconPapers    
Economics at your fingertips  
 

Pseudo-inverse multivariate/matrix-variate distributions

Zhihua Zhang

Journal of Multivariate Analysis, 2007, vol. 98, issue 8, 1684-1692

Abstract: The Moore-Penrose inverse of a singular or nonsquare matrix is not only existent but also unique. In this paper, we derive the Jacobian of the transformation from such a matrix to the transpose of its Moore-Penrose inverse. Using this Jacobian, we investigate the distribution of the Moore-Penrose inverse of a random matrix and propose the notion of pseudo-inverse multivariate/matrix-variate distributions. For arbitrary multivariate or matrix-variate distributions, we can develop the corresponding pseudo-inverse distributions. In particular, we present pseudo-inverse multivariate normal distributions, pseudo-inverse Dirichlet distributions, pseudo-inverse matrix-variate normal distributions and pseudo-inverse Wishart distributions.

Keywords: Matrix-variate; distribution; The; Moore-Penrose; generalized; inverse; Pseudo-inverse; multivariate; distribution; Pseudo-inverse; matrix-variate; distribution (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00050-9
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:98:y:2007:i:8:p:1684-1692

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:98:y:2007:i:8:p:1684-1692