EconPapers    
Economics at your fingertips  
 

Multivariate fractionally integrated CARMA processes

Tina Marquardt

Journal of Multivariate Analysis, 2007, vol. 98, issue 9, 1705-1725

Abstract: A multivariate analogue of the fractionally integrated continuous time autoregressive moving average (FICARMA) process defined by Brockwell [Representations of continuous-time ARMA processes, J. Appl. Probab. 41 (A) (2004) 375-382] is introduced. We show that the multivariate FICARMA process has two kernel representations: as an integral over the fractionally integrated CARMA kernel with respect to a Lévy process and as an integral over the original (not fractionally integrated) CARMA kernel with respect to the corresponding fractional Lévy process (FLP). In order to obtain the latter representation we extend FLPs to the multivariate setting. In particular we give a spectral representation of FLPs and consequently, derive a spectral representation for FICARMA processes. Moreover, various probabilistic properties of the multivariate FICARMA process are discussed. As an example we consider multivariate fractionally integrated Ornstein-Uhlenbeck processes.

Keywords: CARMA; process; FICARMA; process; Fractional; integration; Fractional; Lévy; process; Lévy; process; Multivariate; stochastic; integral (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00104-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:98:y:2007:i:9:p:1705-1725

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:98:y:2007:i:9:p:1705-1725