EconPapers    
Economics at your fingertips  
 

Change point estimators by local polynomial fits under a dependence assumption

Zhengyan Lin, Degui Li and Jia Chen

Journal of Multivariate Analysis, 2008, vol. 99, issue 10, 2339-2355

Abstract: We study a random design regression model generated by dependent observations, when the regression function itself (or its [nu]-th derivative) may have a change or discontinuity point. A method based on the local polynomial fits with one-sided kernels to estimate the location and the jump size of the change point is applied in this paper. When the jump location is known, a central limit theorem for the estimator of the jump size is established; when the jump location is unknown, we first obtain a functional limit theorem for a local dilated-rescaled version estimator of the jump size and then give the asymptotic distributions for the estimators of the location and the jump size of the change point. The asymptotic results obtained in this paper can be viewed as extensions of corresponding results for independent observations. Furthermore, a simulated example is given to show that our theory and method perform well in practice.

Keywords: 62G07; 60F05; [alpha]-mixing; Change; point; Functional; limit; theorem; Local; polynomial; fits; Random; design; model (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00066-3
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:10:p:2339-2355

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:jmvana:v:99:y:2008:i:10:p:2339-2355