EconPapers    
Economics at your fingertips  
 

A note on cuts for contingency tables

Edward H. Ip and Yuchung J. Wang

Journal of Multivariate Analysis, 2008, vol. 99, issue 10, 2356-2363

Abstract: In this note, we propose a general method to find cuts for a contingency table. Useful cuts are, in many cases, statistics S-sufficient for the nuisance parameter and S-ancillary for the parameter of interest. In general, cuts facilitate a strong form of parameter separation known to be useful for conditional inference [E.L. Lehmann, Testing Statistical Hypotheses, 2nd ed., Springer, New York, 1997, pp. 546-548]. Cuts also achieve significant dimension reduction, hence, increase computational efficiency. This is particularly true for the inference about cross-tabulated data, usually with a large number of parameters. Depending on the parameter of interest, we propose a flexible transformation to reparameterize the discrete multivariate response distribution. Inference on cell probabilities or odds ratios will require different parameterizations. The reparameterized distribution is not sum-symmetric. Thus, the finding in this paper expands the results in Barndorff-Nielsen [O.E. Barndorff-Nielsen, Information and Exponential Families in Statistical Theory, John Wiley, New York, 1978, pp. 202-206].

Keywords: 62B05; 62H17; 62E10; Dimension; reduction; Iterative; proportional; fitting; algorithm; Likelihood; factorization; Power; series; family; Separation; of; inference; S-ancillary (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00065-1
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:10:p:2356-2363

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:99:y:2008:i:10:p:2356-2363