Innovations algorithm asymptotics for periodically stationary time series with heavy tails
Paul L. Anderson,
Laimonis Kavalieris and
Mark M. Meerschaert
Journal of Multivariate Analysis, 2008, vol. 99, issue 1, 94-116
Abstract:
The innovations algorithm can be used to obtain parameter estimates for periodically stationary time series models. In this paper we compute the asymptotic distribution for these estimates in the case where the underlying noise sequence has infinite fourth moment but finite second moment. In this case, the sample covariances on which the innovations algorithm are based are known to be asymptotically stable. The asymptotic results developed here are useful to determine which model parameters are significant. In the process, we also compute the asymptotic distributions of least squares estimates of parameters in an autoregressive model.
Keywords: Time; series; Periodically; stationary; Innovations; algorithm (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00029-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:1:p:94-116
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().