Dependence structure of conditional Archimedean copulas
Mhamed Mesfioui and
Jean-François Quessy
Journal of Multivariate Analysis, 2008, vol. 99, issue 3, 372-385
Abstract:
In this article, copulas associated to multivariate conditional distributions in an Archimedean model are characterized. It is shown that this popular class of dependence structures is closed under the operation of conditioning, but that the associated conditional copula has a different analytical form in general. It is also demonstrated that the extremal copula for conditional Archimedean distributions is no longer the Frechet upper bound, but rather a member of the Clayton family. Properties of these conditional distributions as well as conditional versions of tail dependence indices are also considered.
Keywords: Archimedean; copulas; Conditional; distributions; Frechet; upper; bound (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00188-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:3:p:372-385
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().