Change detection in autoregressive time series
Edit Gombay
Journal of Multivariate Analysis, 2008, vol. 99, issue 3, 451-464
Abstract:
Autoregressive time series models of order p have p+2 parameters, the mean, the variance of the white noise and the p autoregressive parameters. Change in any of these over time is a sign of disturbance that is important to detect. The methods of this paper can test for change in any one of these p+2 parameters separately, or in any collection of them. They are available in forms that make one-sided tests possible, furthermore, they can be used to test for a temporary change. The test statistics are based on the efficient score vector. The large sample properties of the change-point estimator are also explored.
Keywords: Time; series; Efficient; score; vector; Strong; approximation; Invariance; Principles; Brownian; bridge (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00006-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:3:p:451-464
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().