The increment ratio statistic
Donatas Surgailis,
Gilles Teyssière and
Marijus Vaiciulis
Journal of Multivariate Analysis, 2008, vol. 99, issue 3, 510-541
Abstract:
We introduce a new statistic written as a sum of certain ratios of second-order increments of partial sums process of observations, which we call the increment ratio (IR) statistic. The IR statistic can be used for testing nonparametric hypotheses for d-integrated () behavior of time series Xt, including short memory (d=0), (stationary) long-memory and unit roots (d=1). If Sn behaves asymptotically as an (integrated) fractional Brownian motion with parameter , the IR statistic converges to a monotone function [Lambda](d) of as both the sample size N and the window parameter m increase so that N/m-->[infinity]. For Gaussian observations Xt, we obtain a rate of decay of the bias EIR-[Lambda](d) and a central limit theorem , in the region . Graphs of the functions [Lambda](d) and [sigma](d) are included. A simulation study shows that the IR test for short memory (d=0) against stationary long-memory alternatives has good size and power properties and is robust against changes in mean, slowly varying trends and nonstationarities. We apply this statistic to sequences of squares of returns on financial assets and obtain a nuanced picture of the presence of long-memory in asset price volatility.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00015-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:3:p:510-541
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().