Singular matrix variate beta distribution
José A. Díaz-García and
Ramón Gutiérrez Jáimez
Journal of Multivariate Analysis, 2008, vol. 99, issue 4, 637-648
Abstract:
In this paper, we determine the symmetrised density of doubly noncentral singular matrix variate beta type I and II distributions under different definitions. As particular cases we obtain the noncentral singular matrix variate beta type I and II distributions and the corresponding joint density of the nonnull eigenvalues. In addition, we propose an alternative approach to find the corresponding nonsymmetrised densities. From the latter, we solve the integral proposed by Constantine [Noncentral distribution problems in multivariate analysis, Ann. Math. Statist. 34 (1963) 1270-1285] and Khatri [A note on Mitra's paper "A density free approach to the matrix variate beta distribution", Sankhya A 32 (1970) 311-318] and reconsidered in Farrell [Multivariate Calculation: Use of the Continuous Groups, Springer Series in Statistics, Springer, New York, 1985, p. 191], see also Díaz-García and Gutiérrez-Jáimez [Noncentral matrix variate beta distribution, Comunicación Técnica, No. I-06-06 (PE/CIMAT), Guanajuato, México, 2006, ], for the singular and nonsingular cases.
Keywords: Random; matrices; Doubly; noncentral; distribution; Noncentral; distribution; Matrix; variate; beta; Singular; distribution; Hausdorff; measure (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00030-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:4:p:637-648
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().