EconPapers    
Economics at your fingertips  
 

Singular matrix variate beta distribution

José A. Díaz-García and Ramón Gutiérrez Jáimez

Journal of Multivariate Analysis, 2008, vol. 99, issue 4, 637-648

Abstract: In this paper, we determine the symmetrised density of doubly noncentral singular matrix variate beta type I and II distributions under different definitions. As particular cases we obtain the noncentral singular matrix variate beta type I and II distributions and the corresponding joint density of the nonnull eigenvalues. In addition, we propose an alternative approach to find the corresponding nonsymmetrised densities. From the latter, we solve the integral proposed by Constantine [Noncentral distribution problems in multivariate analysis, Ann. Math. Statist. 34 (1963) 1270-1285] and Khatri [A note on Mitra's paper "A density free approach to the matrix variate beta distribution", Sankhya A 32 (1970) 311-318] and reconsidered in Farrell [Multivariate Calculation: Use of the Continuous Groups, Springer Series in Statistics, Springer, New York, 1985, p. 191], see also Díaz-García and Gutiérrez-Jáimez [Noncentral matrix variate beta distribution, Comunicación Técnica, No. I-06-06 (PE/CIMAT), Guanajuato, México, 2006, ], for the singular and nonsingular cases.

Keywords: Random; matrices; Doubly; noncentral; distribution; Noncentral; distribution; Matrix; variate; beta; Singular; distribution; Hausdorff; measure (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00030-9
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:4:p:637-648

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:99:y:2008:i:4:p:637-648