EconPapers    
Economics at your fingertips  
 

Empirical likelihood analysis of the Buckley-James estimator

Mai Zhou and Gang Li

Journal of Multivariate Analysis, 2008, vol. 99, issue 4, 649-664

Abstract: The censored linear regression model, also referred to as the accelerated failure time (AFT) model when the logarithm of the survival time is used as the response variable, is widely seen as an alternative to the popular Cox model when the assumption of proportional hazards is questionable. Buckley and James [Linear regression with censored data, Biometrika 66 (1979) 429-436] extended the least squares estimator to the semiparametric censored linear regression model in which the error distribution is completely unspecified. The Buckley-James estimator performs well in many simulation studies and examples. The direct interpretation of the AFT model is also more attractive than the Cox model, as Cox has pointed out, in practical situations. However, the application of the Buckley-James estimation was limited in practice mainly due to its illusive variance. In this paper, we use the empirical likelihood method to derive a new test and confidence interval based on the Buckley-James estimator of the regression coefficient. A standard chi-square distribution is used to calculate the P-value and the confidence interval. The proposed empirical likelihood method does not involve variance estimation. It also shows much better small sample performance than some existing methods in our simulation studies.

Keywords: Censored; data; Wilks; theorem; Accelerated; failure; time; model; Linear; regression; model (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00031-0
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:4:p:649-664

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:99:y:2008:i:4:p:649-664