Sample covariance shrinkage for high dimensional dependent data
Alessio Sancetta
Journal of Multivariate Analysis, 2008, vol. 99, issue 5, 949-967
Abstract:
For high dimensional data sets the sample covariance matrix is usually unbiased but noisy if the sample is not large enough. Shrinking the sample covariance towards a constrained, low dimensional estimator can be used to mitigate the sample variability. By doing so, we introduce bias, but reduce variance. In this paper, we give details on feasible optimal shrinkage allowing for time series dependent observations.
Keywords: Sample; covariance; matrix; Shrinkage; Weak; dependence (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00085-1
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Sample Covariance Shrinkage for High Dimensional Dependent Data (2006) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:5:p:949-967
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().