EconPapers    
Economics at your fingertips  
 

UMVU estimation of the ratio of powers of normal generalized variances under correlation

George Iliopoulos

Journal of Multivariate Analysis, 2008, vol. 99, issue 6, 1051-1069

Abstract: We consider estimation of the ratio of arbitrary powers of two normal generalized variances based on two correlated random samples. First, the result of Iliopoulos [Decision theoretic estimation of the ratio of variances in a bivariate normal distribution, Ann. Inst. Statist. Math. 53 (2001) 436-446] on UMVU estimation of the ratio of variances in a bivariate normal distribution is extended to the case of the ratio of any powers of the two variances. Motivated by these estimators' forms we derive the UMVU estimator in the multivariate case. We show that it is proportional to the ratio of the corresponding powers of the two sample generalized variances multiplied by a function of the sample canonical correlations. The mean squared errors of the derived UMVU estimator and the maximum likelihood estimator are compared via simulation for some special cases.

Keywords: Canonical; correlations; Generalized; variance; Hypergeometric; function; of; matrix; argument; Unbiased; estimation; Wishart; distribution; Zonal; polynomials (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00089-9
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:6:p:1051-1069

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:99:y:2008:i:6:p:1051-1069