Noncentral matrix quadratic forms of the skew elliptical variables
B.Q. Fang
Journal of Multivariate Analysis, 2008, vol. 99, issue 6, 1105-1127
Abstract:
In this paper, the noncentral matrix quadratic forms of the skew elliptical variables are studied. A family of the matrix variate noncentral generalized Dirichlet distributions is introduced as the extension of the noncentral Wishart distributions, the Dirichlet distributions and the noncentral generalized Dirichlet distributions. Main distributional properties are investigated. These include probability density and closure property under linear transformation and marginalization, the joint distribution of the sub-matrices of the matrix quadratic forms in the skew elliptical variables and the moment generating functions and Bartlett's decomposition of the matrix quadratic forms in the skew normal variables. Two versions of the noncentral Cochran's Theorem for the matrix variate skew normal distributions are obtained, providing sufficient and necessary conditions for the quadratic forms in the skew normal variables to have the matrix variate noncentral generalized Dirichlet distributions. Applications include the properties of the least squares estimation in multivariate linear model and the robustness property of the Wilk's likelihood ratio statistic in the family of the matrix variate skew elliptical distributions.
Keywords: Normal; distribution; Skew; normal; distribution; Skew; elliptical; distribution; Quadratic; forms; Cochran's; Theorem (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00096-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:6:p:1105-1127
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().