An extension of Fisher's discriminant analysis for stochastic processes
Hyejin Shin
Journal of Multivariate Analysis, 2008, vol. 99, issue 6, 1191-1216
Abstract:
In this paper we present a general notion of Fisher's linear discriminant analysis that extends the classical multivariate concept to situations that allow for function-valued random elements. The development uses a bijective mapping that connects a second order process to the reproducing kernel Hilbert space generated by its within class covariance kernel. This approach provides a seamless transition between Fisher's original development and infinite dimensional settings that lends itself well to computation via smoothing and regularization. Simulation results and real data examples are provided to illustrate the methodology.
Keywords: Fisher's; method; Reproducing; kernel; Hilbert; space; Functional; data (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00101-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:6:p:1191-1216
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().