Multivariate maximum entropy identification, transformation, and dependence
Nader Ebrahimi,
Ehsan S. Soofi and
Refik Soyer
Journal of Multivariate Analysis, 2008, vol. 99, issue 6, 1217-1231
Abstract:
This paper shows that multivariate distributions can be characterized as maximum entropy (ME) models based on the well-known general representation of density function of the ME distribution subject to moment constraints. In this approach, the problem of ME characterization simplifies to the problem of representing the multivariate density in the ME form, hence there is no need for case-by-case proofs by calculus of variations or other methods. The main vehicle for this ME characterization approach is the information distinguishability relationship, which extends to the multivariate case. Results are also formulated that encapsulate implications of the multiplication rule of probability and the entropy transformation formula for ME characterization. The dependence structure of multivariate ME distribution in terms of the moments and the support of distribution is studied. The relationships of ME distributions with the exponential family and with bivariate distributions having exponential family conditionals are explored. Applications include new ME characterizations of many bivariate distributions, including some singular distributions.
Keywords: Bivariate; distribution; Characterization; Dependence; Exponential; family; Kullback-Leibler; information; Singular; distribution (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00100-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:6:p:1217-1231
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().