Parametric tail copula estimation and model testing
Laurens de Haan,
Cláudia Neves and
Liang Peng
Journal of Multivariate Analysis, 2008, vol. 99, issue 6, 1260-1275
Abstract:
Parametric models for tail copulas are being used for modeling tail dependence and maximum likelihood estimation is employed to estimate unknown parameters. However, two important questions seem unanswered in the literature: (1) What is the asymptotic distribution of the MLE and (2) how does one test the parametric model? In this paper, we answer these two questions in the case of a single parameter for ease of illustration. A simulation study is provided to investigate the finite sample performance of the proposed estimator and test.
Keywords: Empirical; tail; copula; Extreme; values; Maximum; likelihood; estimation; Tail; copula (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00111-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:6:p:1260-1275
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().