Conditionally specified models and dimension reduction in the exponential families
Siamak Noorbaloochi and
David Nelson
Journal of Multivariate Analysis, 2008, vol. 99, issue 8, 1574-1589
Abstract:
We consider informative dimension reduction for regression problems with random predictors. Based on the conditional specification of the model, we develop a methodology for replacing the predictors with a smaller number of functions of the predictors. We apply the method to the case where the inverse conditional model is in the linear exponential family. For such an inverse model and the usual Normal forward regression model it is shown that, for any number of predictors, the sufficient summary has dimension two or less. In addition, we develop a test of dimensionality. The relationship of our method with the existing dimension reduction theory based on the marginal distribution of the predictors is discussed.
Keywords: Conditional; density; ratios; Dimension; reduction; Regression; graphics; Sufficient; summary (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00018-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:8:p:1574-1589
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().