EconPapers    
Economics at your fingertips  
 

A comparative study of Gaussian geostatistical models and Gaussian Markov random field models

Hae-Ryoung Song, Montserrat Fuentes and Sujit Ghosh

Journal of Multivariate Analysis, 2008, vol. 99, issue 8, 1681-1697

Abstract: Gaussian geostatistical models (GGMs) and Gaussian Markov random fields (GMRFs) are two distinct approaches commonly used in spatial models for modeling point-referenced and areal data, respectively. In this paper, the relations between GGMs and GMRFs are explored based on approximations of GMRFs by GGMs, and approximations of GGMs by GMRFs. Two new metrics of approximation are proposed : (i) the Kullback-Leibler discrepancy of spectral densities and (ii) the chi-squared distance between spectral densities. The distances between the spectral density functions of GGMs and GMRFs measured by these metrics are minimized to obtain the approximations of GGMs and GMRFs. The proposed methodologies are validated through several empirical studies. We compare the performance of our approach to other methods based on covariance functions, in terms of the average mean squared prediction error and also the computational time. A spatial analysis of a dataset on PM2.5 collected in California is presented to illustrate the proposed method.

Keywords: 91B76; 86A32; 62H11; 91D72; 60J20 (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00025-0
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:8:p:1681-1697

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:99:y:2008:i:8:p:1681-1697