EconPapers    
Economics at your fingertips  
 

Bootstrap approximation of tail dependence function

Liang Peng and Yongcheng Qi

Journal of Multivariate Analysis, 2008, vol. 99, issue 8, 1807-1824

Abstract: For estimating a rare event via the multivariate extreme value theory, the so-called tail dependence function has to be investigated (see [L. de Haan, J. de Ronde, Sea and wind: Multivariate extremes at work, Extremes 1 (1998) 7-45]). A simple, but effective estimator for the tail dependence function is the tail empirical distribution function, see [X. Huang, Statistics of Bivariate Extreme Values, Ph.D. Thesis, Tinbergen Institute Research Series, 1992] or [R. Schmidt, U. Stadtmüller, Nonparametric estimation of tail dependence, Scand. J. Stat. 33 (2006) 307-335]. In this paper, we first derive a bootstrap approximation for a tail dependence function with an approximation rate via the construction approach developed by [K. Chen, S.H. Lo, On a mapping approach to investigating the bootstrap accuracy, Probab. Theory Relat. Fields 107 (1997) 197-217], and then apply it to construct a confidence band for the tail dependence function. A simulation study is conducted to assess the accuracy of the bootstrap approach.

Keywords: 62G32; 62G09; Bootstrap; Confidence; band; Dependence; function; Extremes; Tail; empirical; process (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00031-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:8:p:1807-1824

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:99:y:2008:i:8:p:1807-1824