The role of news sentiment in salmon price prediction using deep learning
Christian-Oliver Ewald and
Yaoyu Li
Journal of Commodity Markets, 2024, vol. 36, issue C
Abstract:
This paper employs deep learning models and sentiment analysis to predict salmon spot prices. Our data includes historical price data and sentiment scores from 2018 to 2022. We extract sentiment scores from salmon-related news headlines by using FinBERT and TextBlob. We begin with price prediction using only historical price data and then introduce sentiment scores to improve the prediction accuracy of deep learning models. We find that the prediction performance of deep learning models outperforms traditional prediction methods in the salmon market. Our primary hybrid CNN-LSTM model outperforms other deep learning models and traditional models. Additionally, deep learning models incorporating sentiment scores exhibit reduced prediction errors. Our findings confirm the value of sentiment information in improving forecasting performance. These findings highlight the effectiveness and robustness of our CNN-LSTM model combined with sentiment analysis for price prediction in the salmon market.
Keywords: Price prediction; Deep learning; Sentiment analysis (search for similar items in EconPapers)
JEL-codes: G13 G17 (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2405851324000576
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jocoma:v:36:y:2024:i:c:s2405851324000576
DOI: 10.1016/j.jcomm.2024.100438
Access Statistics for this article
Journal of Commodity Markets is currently edited by Marcel Prokopczuk, Betty Simkins and Sjur Westgaard
More articles in Journal of Commodity Markets from Elsevier
Bibliographic data for series maintained by Catherine Liu ().