Solutions for districting problems with chance-constrained balancing requirements
Antonio Diglio,
Juanjo Peiró,
Carmela Piccolo and
Francisco Saldanha-da-Gama
Omega, 2021, vol. 103, issue C
Abstract:
In this paper, a districting problem with stochastic demands is investigated. The goal is to divide a geographic area into p contiguous districts such that, with some given probability, the districts are balanced with respect to some given lower and upper thresholds. The problem is cast as a p-median problem with contiguity constraints that is further enhanced with chance-constrained balancing requirements. The total assignment cost of the territorial units to the representatives of the corresponding districts is used as a surrogate compactness measure to be optimized. Due to the tantalizing purpose of deriving a deterministic equivalent for the problem, a two-phase heuristic is developed. In the first phase, the chance-constraints are ignored and a feasible solution is constructed for the relaxed problem; in the second phase, the solution is corrected if it does not meet the chance-constraints. In this case, a simulation procedure is proposed for estimating the probability of a given solution to yield a balanced districting. That procedure also provides information for guiding the changes to make in the solution. The results of a series of computational tests performed are discussed based upon a set of testbed instances randomly generated. Different families of probability distributions for the demands are also investigated, namely: Uniform, Log-normal, Exponential, and Poisson.
Keywords: Stochastic programming; Districting; Contiguity; Stochastic demand; Heuristics (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048321000396
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:103:y:2021:i:c:s0305048321000396
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.omega.2021.102430
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().