EconPapers    
Economics at your fingertips  
 

Real-time order acceptance and scheduling for data-enabled permutation flow shops: Bilevel interactive optimization with nonlinear integer programming

Wenchong Chen, Xuejian Gong, Humyun Fuad Rahman, Hongwei Liu and Ershi Qi

Omega, 2021, vol. 105, issue C

Abstract: With the fourth-generation industrial revolution, manufacturing industries are focusing on dynamic, fully autonomous, and more customer-oriented production systems. This customer-oriented change converts classically static customer demand into that which is dynamic and real-time, as no prior information regarding customer demand is known in advance. This paper focuses on real-time order acceptance and scheduling (r-OAS) for a data-enabled permutation flow shop. To compensate for the shortage in prevailing approaches that make bottleneck-based decisions or assume that the intermediate buffers among workstations are infinite, an r-OAS scheme is generated based on a data-driven representation, which can concisely predict the dynamic production status of flow shops and the corresponding makespan of a job with finite intermediate buffer constraints. Using this representation, real-time job release planning (r-JRP) can be coupled with r-OAS to minimize various operational costs of flow shops (i.e., the costs of the work-in-process, earliness, and tardiness). In terms of the inherent interactive mechanism between r-OAS and r-JRP, in which r-OAS generates a decision space for r-JRP and r-JRP then feeds the lowest operational costs back for use in r-OAS decision-making, a bilevel interactive optimization (BIO) is formulated to simultaneously address the two subproblems based on the Stackelberg game. The r-OAS acts as the leader, while r-JRP acts as the follower. The BIO is a type of nonlinear integer programming, and a bilevel tabu-enumeration heuristic algorithm is developed to solve it. The efficiency of the BIO is verified through a practical case study. The results show that the BIO can increase the net revenue of flow shops by 2.97%, compared to the bottleneck-based approach, and by 2.45% and 0.92%, respectively, compared to step-by-step methodologies.

Keywords: Data-driven production status recognition; Real-time order acceptance and scheduling; Real-time job release planning; Bilevel interactive optimization; Bilevel tabu-enumeration algorithm (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048321001080
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:105:y:2021:i:c:s0305048321001080

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.omega.2021.102499

Access Statistics for this article

Omega is currently edited by B. Lev

More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jomega:v:105:y:2021:i:c:s0305048321001080