EconPapers    
Economics at your fingertips  
 

Multilayer network analysis for improved credit risk prediction

María Óskarsdóttir and Cristián Bravo

Omega, 2021, vol. 105, issue C

Abstract: We present a multilayer network model for credit risk assessment. Our model accounts for multiple connections between borrowers (such as their geographic location and their economic activity) and allows for explicitly modelling the interaction between connected borrowers. We develop a multilayer personalized PageRank algorithm that allows quantifying the strength of the default exposure of any borrower in the network. We test our methodology in an agricultural lending framework, where it has been suspected for a long time default correlates between borrowers when they are subject to the same structural risks. Our results show there are significant predictive gains just by including centrality multilayer network information in the model, and these gains are increased by more complex information such as the multilayer PageRank variables. The results suggest default risk is highest when an individual is connected to many defaulters, but this risk is mitigated by the size of the neighbourhood of the individual, showing both default risk and financial stability propagate throughout the network.

Keywords: Business analytics; Credit risk; Network Science; Multilayer Networks; Agricultural Lending (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048321001298
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:105:y:2021:i:c:s0305048321001298

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.omega.2021.102520

Access Statistics for this article

Omega is currently edited by B. Lev

More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jomega:v:105:y:2021:i:c:s0305048321001298