Approximations for the Lead Time Variance: a Forecasting and Inventory Evaluation
Patrick Saoud,
Nikolaos Kourentzes and
John E. Boylan
Omega, 2022, vol. 110, issue C
Abstract:
Safety stock is necessary for firms in order to manage the uncertainty of demand. A key component in its determination is the estimation of the variance of the forecast error over lead time. Given the multitude of demand processes that lack analytical expressions of the variance of forecast error, an approximation is needed. It is common to resort to finding the one-step ahead forecast errors variance and scaling it by the lead time. However, this approximation is flawed for many processes as it overlooks the autocorrelations that arise between forecasts made at different lead times. This research addresses the issue of these correlations first by demonstrating their existence for some fundamental demand processes, and second by showing through an inventory simulation the inadequacy of the approximation. We propose to monitor the empirical variance of the lead time errors, instead of estimating the point forecast error variance and extending it over the lead time interval. The simulation findings indicate that this approach provides superior results to other approximations in terms of cycle-service level. Given its lack of assumptions and computational simplicity, it can be easily implemented in any software, making it appealing to both practitioners and academics.
Keywords: Forecasting; Lead time demand variance; Demand uncertainty; Safety stock; Forecast errors correlations (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048322000238
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:110:y:2022:i:c:s0305048322000238
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.omega.2022.102614
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().