A data-driven robust optimization model by cutting hyperplanes on vaccine access uncertainty in COVID-19 vaccine supply chain
Hani Gilani and
Hadi Sahebi
Omega, 2022, vol. 110, issue C
Abstract:
The worldwide COVID-19 pandemic sparked such a wave of concern that made access to vaccines more necessary than before. As the vaccine inaccessibility in developing countries has made pandemic eradication more difficult, this study has presented a mathematical model of a sustainable SC for the COVID-19 vaccine that covers the economic, environmental and social aspects and provides vaccine both domestically and internationally. It has also proposed a robust data-driven model based on a polyhedral uncertainty set to address the unjust worldwide vaccine distribution as an uncertain parameter. It is acceptably robust and is also less conservative than its classical counterparts. For validation, the model has been implemented in a real case in Iran, and the results have shown that it is 21% less conservative than its classical rivals (Box and Polyhedral convex uncertainty sets) in facing the uncertain parameter. As a result, the model proposes the construction of two domestic vaccine production centers, including Pasteur Institute and Razi Institute, and five foreign distributors in Tehran, Isfahan, Ahvaz, Kermanshah, and Bandar Abbas strategically.
Keywords: Vaccine supply chain; COVID-19 pandemic; Sustainability; Data-driven optimization; Robust optimization; Cutting hyperplanes (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048322000457
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:110:y:2022:i:c:s0305048322000457
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.omega.2022.102637
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().