Data-driven method to learning personalized individual semantics to support linguistic multi-attribute decision making
Cong-Cong Li,
Yucheng Dong,
Haiming Liang,
Witold Pedrycz and
Francisco Herrera
Omega, 2022, vol. 111, issue C
Abstract:
In parallel with the development of information and network technology, large amounts of data are being generated by the Internet, and data-driven methodologies are now often being used in decision-making. Recent studies have investigated personalized individual semantics (PIS) in various decision-making contexts to model a fact that words mean different things to different people. However, few studies have investigated PIS in the context of multi-attribute decision-making (MADM). In MADM, in addition to multi-attribute linguistic information, pre-existing classification of the alternatives is always present, which have not been considered in prior research. Most previous studies have simply demonstrated the feasibility of PIS methods with numerical examples using small-scale models, and not with realistic datasets. Therefore, in this study, we propose a data-driven learning model to analyze the PIS of decision makers to support a multi-attribute decision-making model that considers pre-existing classification of the alternatives. Specifically, we first propose a PIS multi-attribute learning function to define a general computation form for comprehensive evaluation of the value of alternatives. Then, considering this pre-existing classification of the alternatives, a PIS learning model is constructed by analyzing the relations between calculated values of alternatives and corresponding class assignments to obtain personalized numerical scales of linguistic terms for a decision maker. Finally, we present a case study based on two datasets and a comparison with other methods to justify the feasibility of the proposed model.
Keywords: Decision analysis; Multi-attribute decision making; Personalized individual semantics; Learning function; Classification (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048322000500
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:111:y:2022:i:c:s0305048322000500
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.omega.2022.102642
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().