EconPapers    
Economics at your fingertips  
 

Effective and interpretable dispatching rules for dynamic job shops via guided empirical learning

Cristiane Ferreira, Gonçalo Figueira and Pedro Amorim

Omega, 2022, vol. 111, issue C

Abstract: The emergence of Industry 4.0 is making production systems more flexible and also more dynamic. In these settings, schedules often need to be adapted in real-time by dispatching rules. Although substantial progress was made until the ’90s, the performance of these rules is still rather limited. The machine learning literature is developing a variety of methods to improve them. However, the resulting rules are difficult to interpret and do not generalise well for a wide range of settings. This paper is the first major attempt at combining machine learning with domain problem reasoning for scheduling. The idea consists of using the insights obtained with the latter to guide the empirical search of the former. We hypothesise that this guided empirical learning process should result in effective and interpretable dispatching rules that generalise well to different scenarios. We test our approach in the classical dynamic job shop scheduling problem minimising tardiness, one of the most well-studied scheduling problems. The simulation experiments include a wide spectrum of scenarios for the first time, from highly loose to tight due dates and from low utilisation conditions to severely congested shops. Nonetheless, results show that our approach can find new state-of-the-art rules, which significantly outperform the existing literature in the vast majority of settings. Overall, the average improvement over the best combination of benchmark rules is 19%. Moreover, the rules are compact, interpretable, and generalise well to extreme, unseen scenarios. Therefore, we believe that this methodology could be a new paradigm for applying machine learning to dynamic optimisation problems.

Keywords: Scheduling; Dynamic Job Shop; Dispatching Rules; Genetic Programming (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048322000512
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:111:y:2022:i:c:s0305048322000512

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.omega.2022.102643

Access Statistics for this article

Omega is currently edited by B. Lev

More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jomega:v:111:y:2022:i:c:s0305048322000512