Enabling inter-area reserve exchange through stable benefit allocation mechanisms
Orcun Karaca,
Stefanos Delikaraoglou,
Gabriela Hug and
Maryam Kamgarpour
Omega, 2022, vol. 113, issue C
Abstract:
The establishment of a single European day-ahead market has accomplished the integration of the regional day-ahead markets. However, reserve provision and activation remain an exclusive responsibility of regional operators. This limited spatial coordination and the separated structure hinder the efficient utilization of flexible generation and transmission, since their capacities have to be ex-ante allocated between energy and reserves. To promote reserve exchange, recent work proposed a preemptive model that withdraws a portion of the inter-area transmission capacity available from day-ahead energy for reserves by minimizing the expected system cost. This decision-support tool, formulated as a stochastic bilevel program, respects the current architecture but does not suggest area-specific costs that guarantee sufficient benefits for areas to accept the solution. To this end, we formulate a preemptive model in a framework that allows application of game theory methods to obtain a stable benefit allocation, i.e., an outcome immune to coalitional deviations ensuring willingness of areas to coordinate. We show that benefit allocation mechanisms can be formulated either at the day-ahead or the real-time stages, in order to distribute the expected or the scenario-specific benefits, respectively. For both games, the proposed benefits achieve minimal stability violation, while allowing for a tractable computation with limited queries to the bilevel program. Our case studies, based on an illustrative and a more realistic test case, compare our method with well-studied benefit allocations, namely, the Shapley value and nucleolus, and analyze the factors that drive these allocations (e.g., flexibility, network structure, wind correlations). We show that our method performs better in stability and tractability.
Keywords: Stochastic programming; Bilevel programming; Coalitional game theory; Electricity markets (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048322001189
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:113:y:2022:i:c:s0305048322001189
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.omega.2022.102711
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().