EconPapers    
Economics at your fingertips  
 

Approximations for many-visits multiple traveling salesman problems

Kristóf Bérczi, Matthias Mnich and Roland Vincze

Omega, 2023, vol. 116, issue C

Abstract: A fundamental variant of the classical traveling salesman problem (TSP) is the so-called multiple TSP (mTSP), where a set of m salesmen jointly visit all cities from a set of n cities. The mTSP models many important real-life applications, in particular for vehicle routing problems. An extensive survey by Bektas (Omega34(3), 2006) lists a variety of heuristic and exact solution procedures for the mTSP that solve particular problem instances. In this work we consider a further generalization of mTSP, the many-visits mTSP, where each city v has a request r(v) of how many times it should be visited by the salesmen. This problem opens up new real-life applications such as aircraft sequencing, while at the same time it poses several computational challenges. We provide polynomial-time algorithms for several variants of the many-visits mTSP that compute constant-factor approximate solutions.

Keywords: Traveling salesman; Many-agent scheduling; Aircraft sequencing (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048322002225
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:116:y:2023:i:c:s0305048322002225

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.omega.2022.102816

Access Statistics for this article

Omega is currently edited by B. Lev

More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jomega:v:116:y:2023:i:c:s0305048322002225