EconPapers    
Economics at your fingertips  
 

Compensation guarantees in crowdsourced delivery: Impact on platform and driver welfare

Aliaa Alnaggar, Fatma Gzara and James H. Bookbinder

Omega, 2024, vol. 122, issue C

Abstract: Crowdsourced delivery and other sharing economy platforms attract freelance workers by offering them flexibility in scheduling their own work hours. Those platforms, however, have been criticized for the lack of protection they offer workers. Since workers are treated as independent contractors, they do not receive minimum wage and other protection measures under labor law. In this paper, we examine the integration of driver compensation guarantees in a platform’s dynamic matching decisions. We study the problem of designing dynamic matching policies that guarantee a particular level of compensation for active workers over a time period, while maintaining work hour flexibility. We model three types of policies, that are either wage-based or utilization-based. We propose an MDP model to capture the dynamic and stochastic nature of the problem, then design a value function approximation algorithm to efficiently solve the large-scale MDP model. Extensive computational testing is conducted to assess the performance of the proposed solution methodology and the compensation guarantees, using synthetic and real-world datasets. Our findings suggest that the utilization policy results in the highest earning for drivers, though at the expense of longer empty miles from drivers’ origins to the pickup locations of matched orders. On the other hand, the effective wage policy leads to shorter average distance to pickup, but slightly lower earning to drivers. Both policies result in only a slight decrease in platform profit as compared to the base case, and exhibit lower dispersion in the distribution of driver earning while active. In contrast, the nominal wage policy shows a comparable trend to the base-case policy in terms of average driver earnings, suggesting minimal benefits for drivers.

Keywords: Crowdsourced delivery; Compensation; Sharing economy; Markov decision process; Value function approximation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048323001299
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:122:y:2024:i:c:s0305048323001299

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.omega.2023.102965

Access Statistics for this article

Omega is currently edited by B. Lev

More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).

 
Page updated 2025-03-19
Handle: RePEc:eee:jomega:v:122:y:2024:i:c:s0305048323001299