A robust optimization approach for placement of applications in edge computing considering latency uncertainty
Jaehee Jeong,
Gopika Premsankar,
Bissan Ghaddar and
Sasu Tarkoma
Omega, 2024, vol. 126, issue C
Abstract:
Edge computing brings computing and storage resources close to end-users to support new applications and services that require low network latency. It is currently used in a wide range of industries, from industrial automation and augmented reality, to smart cities and connected vehicles, where low latency, data privacy, and real-time processing are critical requirements. The latency of accessing applications in edge computing must be consistently below a threshold of a few tens of milliseconds to maintain an acceptable experience for end-users. However, the latency between users and applications can vary considerably depending on the network load and mode of wireless access. An application provider must be able to guarantee that requests are served in a timely manner by their application instances hosted in the edge despite such latency variations. This article focuses on the placement and traffic allocation problem faced by application providers in determining where to place application instances on edge nodes such that requests are served within a certain deadline. It proposes novel formulations based on robust optimization to provide optimal plans that protect against latency variations in a configurable number of network links. The robust formulations are based on two different types of polyhedral uncertainty sets that offer different levels of protection against variations in latency. Extensive simulations show that our robust models are able to keep the number of chosen edge nodes low while reducing the number of latency violations as compared to a deterministic optimization model that only considers the average latency of network links.
Keywords: Telecommunication networks; Uncertainty in network latency; Robust optimization; Edge computing; Application placement (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305048324000318
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:126:y:2024:i:c:s0305048324000318
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.omega.2024.103064
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().